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Abstract

In this paper we have researched the influence of pollutants on such biological objects as photosynthesizing
systems in order to reveal the capabilities and features of their application as the controlling sensor in integral
ecological monitoring microsystems. It is proposed to elaborate upon the intelligent sensor on the basis of: (1)
neural network technologies; (2) the possibility to separate the characteristics of the substances dissolved in water
by means of the methods which recognize patterns in a functional space of the fluorescence curves; (3) the results of
the chromatographic analysis of standard water samples. This sensor allows to predict water state and to make the
optimal decisions for correcting an ecosystem’s condition. The efficiency of such a system for water analysis can be
improved using the dual measurement principle. This principle suggests identification of a biosensor model

according to experimental data.

1. Introduction

Ecological monitoring of the environment is
one of the most important tasks of the natural
sciences. As a rule, the existing systems used for
the analysis and control of an ecological system,
function according to the principles of discovery
of signs characterizing the actions of certain
types of pollutants (direct measurements). At the
same time, some pollutants may remain uniden-
tified if the actions of them upon an ecological
system are insufficiently explored (i.e., either a
physical or a mathematical model may be ab-
sent) or if these pollutants cannot be detected
with the help of existing monitoring methods.
Such imperfections, observed when the ecologi-
cal monitoring systems are designed, may be
overcome if systems oriented to integral pollu-

SSDI 0021-9673(95)00571-4

tion sensors are created. In particular, bio-objects
in which life processes depend upon the state of
the environment can play this role.

Any pollutant exhibits a tendency to be stored
in air, water, silt, plants and animals, and disturbs
their life. As for severeness, the pollutants may
be classified as lethal, dangerous, harmful, latent,
indifferent or comfortable. The first three classifi-
cations are caused by harmful matters in a bio-
object at concentrations of levels about one
hundred to one thousand times higher than the
limit of possible concentration (LPC). Such con-
centrations are obtainable in a sufficiently simple
way by direct measurements. The LPC-level
concentrations, especially when many factors are
active, cause hidden, latent reactions. The direct
measurement of such pollutants is difficult and is
associated with use of very expensive equipment.
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Moreover, during the direct measurements, the
influence of such pollutants may remain nearly
undetected or undetected for a long period of
time.

Living objects are sensitive to the influence of
low concentrations of pollutants and react upon
them when normal physiological processes are
disturbed. This feature of bio-objects is proposed
as a sensor able to record data about the integral
state of an environment.

The author offers a method by means of which
the substances dissolved in water can be analyzed
under dynamic conditions when separate com-
ponents interact with the sensitive element con-
taining photosynthetic objects. Since these com-
ponents influence the objects in a different way,
there appears the possibility to separate the
characteristics of the components by means of
the methods recognizing patterns in a functional
space of the fluorescence curves. Contrary to the
classic chromatography, this method may find
more applications and, moreover, it is adaptable
to measurement conditions. Also, it is possible to
use the chromatographic data at the sensor
training stage, to perform parallel data process-
ing and scientific analysis. The requirements for
sample preparation are low.

2. Experimental
2.1. Materials

Plants, algae, photosynthesizing bacteria, ex-
tracted reaction centers (RCs), Langmuir-
Blodgett—Shefer films taken from reaction cen-
ters of Rh. Sphaeroides purple bacteria were
used to examine the photosynthetic objects. The
pure films and the films affected by atrazine
solution were investigated experimentally. Also,
we examined samples of water taken from differ-
ent artificial ponds, and such pollutants as heavy
metals, chemical toxicants and herbicides of
different concentrations were detected there.
The samples were characterized by numbers in
the range [0,1] and this interval shows the degree
of ecological purity of water.

2.2. Methods

The influence exerted by different pollutants
on the functional characteristics of the photo-
synthetic objects in a sensitive element was
assessed. The curves of delayed fluorescence and
of fluorescence induction were examined for this
purpose. The distinctive features of these curves
were used to analyze the polluted water. The
pattern recognition methods were implemented
on a neural chip with probabilistic neurons, and
the experimental results obtained for the ex-
amined water samples were used to train this
chip (the water component composition was
known here in advance). The sensitive element
characteristics “‘degradation” was corrected by
the method of bilinear identification of the sen-
sor model and the correcting potential on the
membrane was changed. All the mentioned
methods permit to provide the sensor with the
robust features, to implement the principle of
dual measurement and to foresee qualitative
non-parametric assessments of low concentra-
tions of pollutants in water ponds. The assess-
ments can be further improved if the chromato-
graphic analysis results are delivered to the chip
input.

2.3. Apparatus

Fig. 1 depicts the experimental system, which
includes: a film-type biosensor; a neural chip
based on probabilistic neurons and located at the
sensor output (Section 4); and a bilinear model
identifier located in the feedback circuit (Section
3). The signals coming from converter 8 and
photodetector 6 are the input signals for this
identifier. The latter generates the required con-
trol signal value at the feedback circuit output.
The proposed scheme provides dual control
principle realization, and here the biosensor
operation mode as well as the mode in which the
whole monitoring system functions are thus opti-
mized. When the reverse bilinear system is used
as signal converter 8, the neural chip may not be
applied.
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Fig. 1. Experimental eco-object state estimation setup based on a film-type biodetector. 1= Biodetector (A = crystal plate,
B =lipid layer, C=monolayers of purple bacteria RC); 2 =the source of continuous light; 3 = interferometric filters; 4 =
semitransparent glass plate; 5 = photodetector with preamplifier, 6 = photodetector with preamplifier and converter; 7 = flash
lamp; 8 = signal converter; 9 = neural chip; 10 = bilinear model identifier; 11 = feedback unit; 12 = control signal generator.

2.4. Measurements

At present, many papers are known (or have
been published) in which the influence of pollu-
tants on object functioning has been studied.

These investigations were aimed at revealing
the influence on both the spectral characteristics
of such objects [1-5] and the dynamics of charges
in photosynthesizing materials. The results of
numerical simulation of photosynthesizing-sys-
tem dynamics are described in detail in [6-9].

In particular, the essential influence of pollu-
tants on spectral characteristics of radiation of
the chlorophyll-bearing materials was discovered.
We should also note the papers where influence
of pollutants on the kinetics of a charge moving
along an electron-transport circuit of photo-
synthesizing systems is explored. Thus, the exist-
ence of different pollutants in a system blocks, at
one stage or another, the movement of a photo-
excited electron along an electron-transport cir-
cuit of photosystems of plants or bacteria and
causes, therefore, the disturbance of the kinetics
of relaxation of a biological system under its
photoexcitation.

Such disturbances are revealed in optical
characteristics of photosynthesizing objects in the

following ways:

- relaxation times for a system change under
pulsed optical excitation in absorption
bands of chlorophyll-bearing pigments;

- the slow fluorescence and the form of the
induction fluorescence curve are changed
when an object is acted upon by continuous
optical excitation.

We have analyzed the optical features of some
green plants and photosynthesizing bacteria
[6,7,10] and the extracting RCs and the Lang-
muir-Blodgett—-Shefer films on their base in
order to reveal the possibility to use them in
computer-aided ecological monitoring systems.
The kinetics of photomobilized electron recom-
bination in photosynthetic bacteria RCs was
considered. Analytic solution of equations which
describe the electron-conformation transitions in
both the limiting cases with “‘fast” and “‘slow”
diffusion in conformational coordinate space
were found. According to the experimental data
the conformational potentials of a system with
electrons on the pigment and on the primary
acceptor were considered. The possibility of
electron-transfer efficiency control due to light-
induced intensity was shown. Let us dwell on
some characteristics which are the most evident
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ones for application of the bio-objects, namely,
green plants and algae, for the above-mentioned
purposes.

Fig. 2 depicts the curves of fluorescence induc-
tion of green plant leaves that are in a healthy
environment and ones that were acted upon for 2
min by an atrazine-water solution (under the
LPC-level concentration: about 107> M). These
curves are recorded in no more than 2 min and
easily define the features associated with the
presence of herbicides in an environment. Such
facts make it possible to construct an integral
ecological monitoring system on the basis of such
a type of a biosensor. Note that the curves of
induction of fluorescence of plants are also
disturbed when actions of heavy metals and of a
wide range of toxicants of chemical nature occur.

Another object of our particular interest is the
RC of purple bacteria Rb. Sphaeroides. The
analysis of their absorption spectra shows essen-
tial changes at the wavelength region 750-900
nm under the action of saturating optical pump-
ing. These changes are due to photooxidation of
the RC and they manifest also in the recovery
kinetics of the RC under pulsed optical excita-
tion. As well established now the herbicides
substitute the secondary quinone acceptors from
their localization sites in the RC, causing the
sufficient changes of RC recovery kinetics. Fig. 3
shows the recovery kinetics of isolated Rb.
Sphaeroides RC suspensions with (Fig. 3c) and
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Fig. 2. Curves of fluorescence induction for green plants leaf.
Solid line for plants in unpolluted water; (*) for plants in
water solution of atrazine. Arrows indicate: 1 the moment
of turning on the acting light; | the moment of turning off
the light.
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Fig. 3. Electron donor recovery kinetics of Rb. Spheroids RCs
without addition of inhibitors under pulsed optical excitation:
(a) by He-Ne laser (A=633 nm, 7=1 s); (b) by Xe-lamp
(A=450-650 nm, 7=10 us). (¢) The curve shows the
corresponding dependence for a RC suspension with atrazine
(1077 M) under Xe-lamp excitation. The times (in s) of the
best exponential approximation of the experimental curves
by the calculated ones are given in the figures.

without (Fig. 3a, b) addition of herbicides. One
can see the presence of only the short-time
component in the curves on Fig. 3c. Thus, the
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herbicides are well detected optically in the
experiments on the recovery kinetics of purple
bacteria RC suspensions. The main result is that
the characteristic time of recovery is much shor-
ter for the samples with herbicides than for those
without herbicides.

It is evident that film-type sensors (see this
section below) may be essentially more suitable
for computer-aided controlled ecological moni-
toring systems to be designed. We have studied
the recovery kinetics of Langmuir films of RC
Rb. Sphaeroides. Fig. 4a presents the curve for
the samples in the natural unpolluted ecological

8600
"
=]
6300 .
=]
M
«
6000 <
©
5700 T T - —
0 4 8 12 18
Time, [S]
5790
—
5760 o
=
5730 o
-
5700 «
-
5670 L)
5640 T ¥ T -
0 4 8 12 186
Time, [S]

Fig. 4. Electron donor recovery kinetics of Langmuir-film
RCs (20 monolayers) following He—Ne laser pulsed (1 s)
excitation before (a) and after (b) 5 min processing with an
atrazine water solution. The times and the weights of the best
exponential approximation of the experimental curve by the
calculated one are given in (a). For (b): curve 1 corresponds
to the sample processed with atrazine solution of 1077 M [the
best approximations with 7, =0.21 (50%), 7, = 13.0 (20%),
7, =1.89 (30%)]; curve 2 corresponds to 10™° M atrazine
solution [r, =0.21 (70%), 7, =12.0 (20%), 7, = 1.89 (10%)];
curve 3 is for 107> M atrazine solution [r, =0.21 (88%),
7, =11.11 (12%)).

system (water). This curve is almost the same as
for suspensions of RC with unblocked electron
transition from the primary to secondary quinone
acceptor (see Fig. 3a). After immersion of the
films into the water solution of atrazine (10 °—
1077 M) the electron transfer onto the secondary
acceptor was blocked. This was revealed ex-
perimentally by increasing of the short-living
component weight (Fig. 4b).

One should point out that the studied Lang-
muir films were of rather good quality, but
improvement of their optical characteristics is
necessary for further practical application. These
films can serve as the basis of the sensors used in
ecological monitoring systems, but the task for
the nearest future consists in making our sensors
more perfect.

In conclusion, it may be noted that right now it
is possible to model ecological monitoring sys-
tems using (as the biosensors) green plants fixing
the useful data, in particular, in the form of a
disturbed fluorescence induction curve. On the
basis of such sensors, integral ecological moni-
toring systems can be designed both for separate
ecological objects and for more extended sys-
tems.

3. Identification of a bilinear approximation to
a sensitive biosensor element

The identification of a sensitive biosensor
element (SBE) based on approximation of the
input—output map with certain simple models has
appeared recently.

In the continuous-time case these simple
models are bilinear systems (BS), given by:

X(t) = [Ag + Zu,(r)Af]x(r),

y(t) = Ax(0), 1
where the state is x € R" and the (scalar) output
is y(t); u,(t) is measured signal; u,(t), ... u,(t)

are the control inputs of the biosensor. The
approximation result is as follows:

Let JC[0,®) and CC[C*(J)]” be compact
sets, where C*(J) denotes the space of continu-
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ous functions J— R, with the supreme norm. A
functional J X C— R is said to be causal if and
only if its value in t € J, for (u,, ... u,) € C, does
not depend on u,(r), ... ,u,(r) for all t <7; then

Theorem 1. Any causal and continuous func-
tional / X C— R can be arbitrarily closely ap-
proximated by BSs.

This result has been independently obtained by
Susmann [11]. In the discrete-time case, the
former result is not valid, as can be seen with the
classic counter example y(t)=u’(t—1). How-
ever, a similar result can be shown replacing BSs
by state-affiance systems:

x(t+1)= [AO + Z flu, @), ... ,um(t))A,.]x(z),

y(t) = Ax(0), 2)

where x€R", y(t) is scalar and f(u,(?),
... U, (1)) are monomials in the inputs u,(¢),
...,u,,(t). An input—output map is continuous if
and only if for every ¢ the output depends
continuously on the inputs u,(j), ... ,u,,(j), with
0<j<t—1.

Theorem 2. Any continuous SBE map input-
output can be arbitrarily closely approximated on
a finite time interval and with bounded inputs by
state-affine systems.

At the identification stage it seems convenient,
for computational reasons, to use discrete
models, as presented by Hang Van Mien and
Normand-Cyrot [12]. They used a least-squares
method on a single-input-single-output SBE,
verifying the following conditions: i) the input-
output map can be linearized at several operating
points, ii) an operating point is described by
certain measurable parameters # € R™* which,
in the state-affine approximation, play the same
role as control inputs where u, ., ... .u,, are the
parameters 6. In applications, the difficulty lies in
the determination of the number of parameters,
their physical meaning and their relation with the
dynamic behaviour of the system. However, we
want to present the excellent results obtained
when these inconveniences can be overcome, as
in the cases presented in the paper referred to.

In spite of what has been previously said,
continuous-time analysis should not be dis-
carded, since it is common in practice when
processes and systems described by differential
equations are found. This is the motivation for
our work on the proposed identification method
based on an approximating model given by Eq. 1.
The technique used is of the Ritz-Galerkin kind
[13]. The hypotheses i) and ii) mentioned above
are not needed, although it is required that the
states of the SBE must be observable.

3.1. Identification procedure

Let z(t) ER" be the output variables of an
SBE when the inputs are u,(t), ...,u,(¢). Both
z(t) and u(t) are assumed to be measured. We
shall determine coefficients A, i=1, ...,p, in
such a way that the system in Eq. 1 will produce
states x(¢) close, in some sense, to z(¢), when the
inputs are u,(t) in the time interval [0,7]. In
order to achieve this, we shall follow the ideas
presented in [6]. Let {u, (¢)},_, be a basis of
L’[0,7] and define u,(¢) = 1. The system in Eq. 1
can be written as:

X = I:Zou (1A ,]x(t). 3)

Observe that the apparently more general

o= [z)“f(f)Mf] ¥+ Zu 0B, @)

j=1

can be written in the form of Eq. 2 by defining

y .
x=|7]. 4,=(m:B) (5)
with B, = 0. Integrating Eq. 3, multiplying by v,
and integrating from 0 to T, results in

T

b A f wl[x(®) — x(0)] dr

0

T t

= [0t S0 0 ©)

0

Calling I', the primitive of v,
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P

by = 4, | uosOL - L] ds. %
0

j=0

The integral on the right-hand side is defined
as (g’*)". Eq. 7 can be repeated in k, until the
same number of equations as unknowns is ob-
tained. It can be seen that the number of func-
tions ¥, required is L = (p + 1)n — 1. Proceeding
in this manner we obtain the system of equations

Qa =D, (8)
where
q()() 10 qL(]
qu 11 QLl
Q= ' ,
qDL qlL qLL
by Ay
b, A
b= (L+1)Xn, a=|  |(L+1)Xn
b, A,

Solving the linear system of Egs. 8, calculate
the coefficients of the system in Eq. 3. This
solution is always possible because of the linear
independence of the ¥’s. Furthermore, it must
be noticed that we require u(t)#u(t), 0<i,
j=<p. It is possible to built a rectangular system
of the form of Eq. 8 adding equations corre-
sponding to y,’s with k > L; and then solving by
least squares. We considered the following equa-
tion of the SBE

j—ay —by —cy’ =u(y),

or its equivalent

q, = 43,
d, = aq, + bq, + cq; + u(o). ©)

The order n of the approximation BS is not
known, hence different approximations are made
by incorporating additional states. The observed
states are (q,,q,) and powers and products of g,
and ¢, are incorporated to augment the dimen-
sion of the approximation. This is justified since

the functionals of the SBE are analytic, and then
we can naturally introduce power series involving
those terms. A formal proof and the relationship
with Volterra series was given by Brockett [14].
The pollutant characteristics assessment method
is presented in [15]. The bilinear models are
given by

X=Ax+ A xu,

where x €ER” and u contains scalar functions.
The identification procedure is used to obtain the
matrices A, and A,. The independent functions
y, used in this example were the Laguerre
polynomials.

4. Separation of pollutant characteristics by
neural chips

4.1. Requirements for standard samples of
polluted water

The present point suggests that it is necessary
to make use of a neural chip based on probabilis-
tic neurons and used to recognize the characteris-
tics of water pollutants. It is supposed that the
results of chromatographic analysis can be de-
livered to the chip input. However, when the
neural processing method is applied, it can also
compete with the chromatographic methods.

In all the cases, when derivation of a mathe-
matical model adequate for an object is not
successful at some investigation stage, but there
are only experimental data characterizing the
behaviour of this object under various disturbing
actions, pattern recognition training methods can
be used [10].

The main requirements for the pattern recog-
nition training methods are: guarantee of quality
and reliability of object state recognition per-
formed by the solution rules yielded by the
training process; these solution rules must be
easily interpretable and, from the technical point
of view, they also must be easily implementable
when it is necessary to create a special pattern
recognition system; possibility to operate with
object properties of different types.
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Let us represent some types of pollutant con-
centration prognostication problems which can
be formulated and solved within the framework
of the pattern recognition training problem and
let us take the water environment state assess-
ment problems as the example when the assess-
ment is made pursuant to indirect measurements.

Assume that the investigation object is the
water assay and there exists some measuring
facility based on biosensors and an electrical or
optical signal is recorded at the facility output.
The parameters characterizing such a signal
(frequency, phase, amplitude characteristics,
etc.) are hereafter referred to as the indirect
measurements. Here follow the series of experi-
ments. A water assay is taken and the direct
measurements are performed (chemical analy-
sis, etc.) and according to these results an ex-
pert (an expert group) yields the integral water
quality assessment made according to the prop-
er assessment scale. For instance: ‘“Water” =
(“distilled”, “spring”, ‘“drinking”, ‘“‘industrial”,
“domestic”), or: “ Water” = (“very pure”,
“pure”, “more likely pure”, “more likely pol-
luted”, “polluted”, “polluted very much”). As
the result of all such experiments, we have an
L-length observation sample V on which the
object subsets V,.V,, ...V (V=U', V; VN
Vy,=@ when j#k) are determined and they
correspond to the water quality classes (pat-
terns) VEVE .. V¥ identified with respect to
the assessment scale. Every object v EV is de-
scribed by the vector of values x=(x,x,,
....x,) of the indirect measurements.

The observation sample V is the data required
for the training algorithm to operate. Pursuant to
the above-mentioned requirements made with
respect to recognition systems, state the pattern
recognition training problem as follows.

Let V; be a subset of training sample objects
which corresponds to a pattern V' * and let V; be
an object subset corresponding to the rest of
patterns V7.

It is said that when using the training sample V
it is required to find sets of signs in the space
where every object set V; can be separated from
the set V; by the solution rule F(x) that belongs
to a solution rule set ®. And here, the quality of

recognition of new objects done by the rule F(x)
must be guaranteed with reliability 1 — » and this
quality is not lower than the value [8]

InN—Inn

€ = 2 N
as specified in advance. Here N is the extension
function of a solution rule set .

To solve the problem in such a statement,
recognition training algorithms may be used.

During the training process, the most informa-
tive indirect measurements and the ones meeting
the pattern sign definition are selected from the
indirect measurement set. The final result of the
training procedure is the set of solution rules
which permit to prognosticate a water state
pursuant to the indirect measurements. And the
quality and reliability of the work under the new
data are guaranteed for the obtained solution
rules.

4.2. Separating pollutant characteristics by a
stochastic neural chip

The intelligent sensor is the device with the
neural chip. We use a neural chip with symmetric
recurrent connections where each neural element
is stochastic and the firing depends on the
weighted sum of inputs.

Let us consider a neural chip consisting of n
neurons, and let w,=w, be the symmetric
connection weight between the ith neuron and
the jth neuron. The self-recurrent connection w;
is assumed to be zero. Let ki, be the threshold of
the ith neuron. The potential of the ith neuron is
defined by

U = lz)w,.,.xj. (11)

Each neuron changes its state asynchronously
depending on U,, where the new state, x;, of the
ith neuron is equal to 1 with probability p(U,)
and is equal to 0 with probability 1 — p(U,).
The vector x = (x,, ... .x,) is called the state of
the neural chip. A state transition is mathemati-
cally described by a Markov chain with 2" states
x. When all the neurons are connected, they form
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an ergodic Marcov chain, having a unique
stationary distribution w(x). Every initial state x
converges to f(x), and state x appears with
relative frequency f(x) over a long course of
time.

Let »(x) be the probability distribution over x
with which an ecological information source
emits a signal x. Signals are generated indepen-
dently subject to »(x) and are presented to a
neural chip. This chip is required to modify its
connection weights and thresholds so that it will
simulate the ecological information source. It is
required that the stationary distribution f(x) of
the neural chip becomes as close to »(x) as
possible. The learning rule is given by

Aw, = Aw; = €y, — ), (12)

where € is small constant, », is the relative
frequency that both x, and x; are jointly excited
under probability distribution »(x), and f;; is the
relative frequency that both x; and x; are jointly
excited under f(x), that is, when the neural chip
is running freely.

The learning rule is realized by the Hebbian
synaptic modification method in two phases [16].
In the first phase, the input learning phase, the
connection weight w;; is increased by a small
amount whenever both x, and x, are exited by an
input x; hence, on average the increment of w; is
proportional to v,. In the second phase, the free
or antilearning phase, w, is decreased by the
same small amount whenever both x; and x; are
excited by the free state transition; hence, the
decrement of w, is proportional to p; on aver-
age.

We consider a situation where the neurons are
divided into two parts, namely visible neurons
and hidden neurons. Visible neurons are divided
further into input and output neurons. In the
learning phase, inputs are applied directly to
visible neurons. Inputs are represented by a
vector x, = (x,,x,) for visible neurons, where x,
and x, correspond to the states on the input and
output neurons, respectively, and components on
hidden neurons have meaning in this phase. A
visible input x,, is generated from the ecological
information source. Its joint probability distribu-
tion is denoted by »(x,x,).

In the working or recalling phase, only the
input part x; of the x,, is applied. The stochastic
state transitions take place under this condition
of fixed x,, so that the conditional stationary
distribution f(xy.xo/x;) is realized, where xy
denotes the states on the hidden neurons. The
distribution can be calculated from the connect-
ion weights, thresholds and the fixed x,.

In the more general case a Boltzmann machine
is required to realize the conditional probability
distribution »(x./x,) of the ecological state of
water as faithfully as possible by learning. The
distribution of the state of the hidden neurons is
of no concern, but f(x,.x;) should be as close to
v(xo.%;) as possible.

It can also be shown [17], that the learning rule
gives a stochastic gradient descent of the con-
ditional Kullback information

V(X X0)

M[vif]= 2 ) uxo/xy) log YTAL (13)

where »; denotes the relative frequency of x; =
x;=1 under the condition that x, and x, are
fixed and f; is the relative frequency in the
restricted free run when only x, is fixed.

Another solution of this problem is also pos-
sible. Introduce, for instance, the notions “pure
water” and “‘polluted water”. According to the
direct measurement results, an expert determines
the degree of belonging of a given observation
object to the “pure water” and “‘polluted water”
notion. The degree of belonging is specified by a
number taken from the closed interval [0,1]. For
example, if some given observation object is the
“pure water” notion standard, then the degree of
belonging for it is equal to 1 and, by contrast, its
degree of belonging to the “polluted water”
notion is equal to 0.

The training is over, and the pattern recogni-
tion system yields the prognosis with respect to
water quality as the degree of belonging of this
observation object to the “pure water” or “‘pol-
luted water” notion.

Within the framework of the pattern recogni-
tion training problem, not only the problem
associated with prognostication made with re-
spect to indirect measurements of water quality
can be solved, but also the problem of prognosti-
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cation of concentration of different chemical
agents and elements (e.g., herbicides) in this
water. In this case, it is guaranteed with reliabili-
ty 1—% that the probability of deviation of a
prognosticated value from a real value by more
than 2g does not exceed the value e specified in
advance.

5. Results and discussion

1. The theoretical and experimental investiga-
tions as well as the sensor signal processing
methods and the environment state assessment
methods based on neural network technologies
are considered here. These investigations can be
the basis for improvement of the sensitive sensor
elements. The results of studying the neural
sensor are based on the novel principles of
information processing performed in physical
and biological systems. It is proposed here that
the intelligent sensor be elaborated on the basis
of: 1) neural network technologies; 2) the possi-
bility to use the chromatographic characteristics
of different pollution components in water.

2. Experimental investigations were performed
using photosynthetic bacteria to study the in-
fluence of herbicides on optical properties of the
RC. In the presence of herbicides at the LPC-
level, essential changes of the RC’s recovery
kinetics were observed.

3. Langmuir films of RhA. Sphaeroides purple
bacteria RCs were determined to be a good
detector of water pollution.

4. The influence of herbicides, heavy metals
and some other pollutants (toxicants) on the
operation of the green-plant photosynthesis ap-
paratus was analyzed experimentally. The analy-
sis was performed pursuant to the results con-
cerning the influence on kinetic-fluorescent
characteristics of plants. The fluorescence induc-
tion curves of green plants adequately reflect
their response to unfavourable conditions pres-
ent in the environment.

5. The choice of a non-linear identification
method for biosensor dynamics was substan-
tiated. Algorithms were proposed for identifica-
tion of the non-linear model with respect to the

experimental input and output data and on the
basis of the Ritz—Galerkin method. The possi-
bility of performing the system analysis of
biosensor dynamics and construction of an in-
verse model to classify the pollutants was de-
termined [15]. Information was also obtained
about the character of the processes running in
polluted water.

6. Training algorithms which guarantee the
quality and reliability of recognizing the water
state are proposed and theoretically substan-
tiated. This quality is not lower than the value
specified in advance. In this case, it becomes
possible to operate with biosensors of different
types.

7. Intelligent sensors provide a new mi-
crosystem for treating the wide variety of
ecological pollutants. Information geometry that
originates from the intrinsic properties of a
smooth family of probability distributions is also
appropriate to the study of the manifold of
sensors. The manifold of simple intelligent sensor
with no hidden units is proved to be /-flat and
m-flat, so that it possesses nice properties. The
present paper, together with [16], is the first step
in constructing a mathematical theory of sensors.
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